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Background 
 
Drought differs from other hazard types in several ways. Unlike earthquakes, floods or 
tsunamis that occur along generally well-defined fault lines, river valleys or coastlines, 
drought can occur in all climate types with the exception of deserts, where it is ill-
defined. Drought typically develops slowly, resulting from a prolonged period (from 
weeks to years) of precipitation that is below the average, or “expected”, value at a 
particular location.  Ultimately, drought represents a condition of insufficient water 
supply relative to demand, with both being highly location-specific. For example, a few 
months of deficient rainfall in a particular region may adversely affect rain-fed 
agriculture but not a reservoir system with substantial storage capacity. And defining 
what constitutes “deficient” precipitation depends on the local climate.  
 
Drought is often described as falling into three main categories: meteorological, 
agricultural, and hydrologic. Meteorological drought refers to a usually prolonged period 
of deficient precipitation. Agricultural drought occurs when soil moisture is depleted to 
the point where it begins to adversely affect crops, pasture, or rangeland. A reduction in 
soil moisture is in part related to a lack of precipitation but also depends on other 
meteorological conditions such as temperature and wind and non-meteorological factors 
such as soil type and terrain. Hydrologic drought refers to a condition of persistent, 
below-average surface water levels in rivers, streams, lakes and reservoirs or subsurface 
water such as an unusually low water table. These conditions are again partially related to 
precipitation variability but also to non-meteorological factors. Given the importance of 
non-meteorological factors there is often a delay between the occurrence of 
meteorological drought and the onset of hydrologic drought, for instance. Because of the 
different types of drought (related to its varying impacts) and the different time scales 
over which it operates there is no universally agreed-upon drought definition or method 
for mapping the drought hazard.  
 
Among natural hazards, drought risk is especially difficult to quantify. Defining what 
constitutes a drought across the wide range of regional climates around the globe is 
challenging in its own right, identifying what drought characteristics (intensity, duration, 
spatial extent) are most relevant to a specific drought-sensitive sector (agriculture, water 
management, etc.) poses another layer of complexity. To a large extent, drought differs 
from other hazard types in the way losses are incurred. Drought typically does not 
destroy infrastructure or directly lead to human mortality. Famines may be triggered by 
drought but increased human mortality during famine is ultimately linked to a broader set 



of issues surrounding food security. In addition, the impacts of drought may occur in 
locations that are largely removed from the drought’s occurrence in the meteorological 
sense.  For example, deficient precipitation in the source region of a river system may 
result in major impacts at downstream locations hundreds of kilometers away. Thus, even 
once a methodology for defining drought is achieved, evaluating drought risk from 
drought remains a region-specific challenge. Some examples of the challenge in mapping 
the spatial distribution of meteorological drought are given below. 
 
 
Data Issues in Mapping Meteorological Drought  
 
Even when the focus is narrowed to the mapping of meteorological drought, there are 
several issues to consider.  First, not surprisingly, is the quality and representativeness of 
the meteorological data that goes into the analysis.  Station-based precipitation analyses, 
for example, typically have varying spatial and temporal coverage.  Figure 1a, for 
example, shows the locations of all precipitation stations listed in the Global Historical 
Climatology Network (GHCN) that is archived at the National Climate Data Center 
(NCDC).  Fig 1b indicates only those stations having at least 90 percent complete data 
records for the period 1971-2000.     
 
   (a) 

 
   (b) 

 
 

Figure 1.  Locations of all stations reporting monthly precipitation as listed in the GHCN data 
base (a).  Locations of only those precipitation stations with at least 90% complete monthly 
records for the period 1971-2000.  Data source is NCDC, data archived at the IRI Data Library at:  
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.GHCN/.v2beta/ 

 
 



A second example relating to data availability is shown in Figure 2. Plotted in the figure 
are two time series of the departure from the 30-year average (1979-2004) monthly 
precipitation based on two versions of the gridded precipitation analyses from the 
University of East Anglia (UEA).  These monthly departures have been averaged across a 
box that roughly covers the Democratic Republic of the Congo (DRC) and a 12-month 
moving-average has been applied to both series.  Notice the major discrepancies between 
the series.  As was shown in Figure 1, there is comparatively sparse coverage of 
publically available precipitation data over Africa compared with locations such as the 
US, Europe and Australia, for example.  The gridded UEA precipitation dataset is based 
solely on station observations so it is clearly going to be impacted by limited station 
inputs. (It should be noted that the UEA dataset is not limited to only those stations found  
in the GHCN). 
 

 

 
Figure 2.  Time series of monthly precipitation departures from the 1979-2004 base period 
averaged over a region that roughly covers the DRC (10S-6N, 18E-30E). A 12-month moving 
average has been applied to both time series which are derived from the UEA version TS2.1 and 
TS3.0 datasets.  These are available from the IRI Data Library at: 
http://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/ 

 
Figure 3 indicates how the number of station inputs has varied over time in the UEA data 
when averaged over the boxed region that roughly covers the DRC.  The figure shows the 
average number of stations within the “influence radius” of a given grid point.  Notice 
that version TS3.0 has many more stations than version TS2.1 over most of the period.  
Also notice that the number of stations used as inputs has varied substantially over time 
with the most recent period having the fewest number of stations. 
 

 

 
Figure 3.  Time series of the average number of stations within the radius of influence of grid 
points that roughly cover the region of the DRC.  Data are from 1950-2000 and are available at: 
http://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/ 



Thus, data availability is a major challenge when attempting a global drought mapping 
study using only publically available data.  While the advent of remote sensing from 
satellites has allowed for more uniform spatial coverage of precipitation estimates, 
satellites information has only been available for about the past 30 years.  And to provide 
the most utility, such datasets need to be carefully calibrated to observed precipitation. 
 

 
Drought Index and Base Period Considered 
 
As mentioned, there are numerous drought indicators in use.  To be most relevant to 
specific applications, the temporal fluctuations of such indicators need to be associated 
with specific impacts.  In addition, when attempting to map meteorological drought 
across locations with differing climatological precipitation a typical approach is to use 
some form of standardization.  This could be done, for example, by looking at 
precipitation percentiles, percent of median, or an index such as the Standardized 
Precipitation Index (SPI).  The SPI is in wide use around the world and what is 
essentially done is to first fit a cumulative distribution of observed precipitation over a 
given time period (typically 1 month to multiple months) and then map the associated 
probabilities onto a unit normal distribution N(0,1) as shown in Figure 4.  The advantage 
in doing so is that the value of the index in one location can be directly compared with 
that of a different region.  The disadvantage is that, by definition, drought (usually 
associated with values of less than -1.0) will occur with essentially the same overall 
frequency at all locations. 
 
 

!
Figure 4.  Distribution of the SPI.  Average conditions have a value of 0 with increasingly dry 
conditions given by negative values of the index.  By design, the overall frequency of occurrence 
of the SPI is essentially the same at all locations.  

 
In addition, as mentioned the SPI (and other indicators) can be evaluated over different 
time periods (e.g., 3 months, 12 months, etc.).  Which time period is best to use?  That 
depends on what aspect of drought and associated impacts are being considered (and 
again, how the index corresponds to those impacts).  Even for the same sector, say 
agriculture, the impacts of drought on crops in the semi-arid tropics with a short rainy 
season are likely to be different than the impacts on crops in temperate climates in a 
location with precipitation throughout the year.  
 



Figure 5 shows two time series for the 3- and 12-month SPI for the lower Hudson Valley 
based on data from NCDC.  Notice there are times when one indicator indicates wetter 
than average conditions while the other indicators reveals drought.  For example, during 
the period starting around 2005 to the end of the time series, the 12-month SPI barely 
drops below zero, while the 3-month SPI is substantially negative several times. The 
linear temporal correlation between the 3- and 12-month SPI time series over the full 
time period 1950-2010 is 0.6.  Thus, less than 40% of the variance of one time series is 
explained, in this linear sense, by the other. 
 

 
Figure 5. Time series of SPI-3 and SPI-12 for the lower Hudson Valley for the period January 
1990 – April 2011 (base period used is from 1950-2011.  The precipitation data used to generate 
the SPI time series originates from NCDC and is available from the IRI Data Library at: 
http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCDC/.CIRS/.ClimateDivision/.pcp/ 

 
 
As a final example, the base period considered when mapping drought frequency is very 
important.  There are well-known decadal (i.e., slowly evolving) variations to the climate 
system that result in drought being more frequent during some decades compared with 
others.  A classical example is the Sahel, which during the 1950’s and 60’s was relatively 
wet while the 1970’s and 80’s brought much more widespread and severe droughts to the 
region.  An example of this from the US is provided in Figure 6, which shows time series 
plots of the 12-month SPI computed for precipitation averaged across the southern Plains 
(90W-115W, 29N-42N).  The base period used to compute the SPI was from 1931-2000, 
with two, thirty-year sub-periods plotted. The precipitation data used was from the UEA 
dataset.   The dashed lines in Figure 6 indicate a threshold of -1.5 for the SPI, indicative 
of drought. The total number of years in which the SPI was less than -1.5 during the 
period 1931-1960 was 8; for 1971-2000 it was 2.  A simple approximation to the return 
period of drought is given by 
 

T =
1

1! p
 

 
where T is the return period (in years) and 1- p is the probability of exceedance in any 
given year.  In the above case both periods cover 30 years so 1-p is equal to 8/30 during 
1931-1960 and 2/30 during 1971-2000.  The corresponding return periods are 3.75 years 
and 15 years, respectively.  Major droughts occurred in the southern Plains during the 
1930s and 1950s, so if this period is excluded from the analysis, the overall estimate of 
drought return period is biased towards the higher value. 



            (a) 

 
        (b) 

 
Figure 6. Time series of SPI-12 for the southern US Plains for the period (a) 1931-1960 and (b) 
1971-2000.  The base period used to compute the SPI was 1931-2000, with the computation based 
on UEA data (http://iridl.ldeo.columbia.edu/SOURCES/.UEA/.CRU/.TS2p1/.monthly/.prcp/). 
  

 
Summary 
 
Overall, the unique characteristics of drought make it difficult to analyze vulnerability 
and risk in the same framework as the other hazard types. Available loss data sets do not 
provide information on the factors contributing indirectly to drought mortality, while 
mortality itself is not a good indicator of impact. Similarly, there is also no clear way to 
translate meteorological drought into agricultural drought since it depends on the farming 
system and even on individual crop choice. Specific risk and vulnerability to droughts 
and how they affect income, consumption, health, human development and productivity 
are therefore best analyzed in detailed local and context specific studies. 
 
Despite these challenges, in contrast to other natural hazards drought is a slow onset 
phenomenon making it particularly amenable to the development of early warning 
systems. In addition to its slow onset, a major climate factor leading to drought, 
particularly in tropical locations, is the El Niño-Southern Oscillation (ENSO) 
phenomenon. Advances in climate science have made possible skillful seasonal 
predictions of both ENSO and its associated seasonal rainfall variations with three or 
more month lead-time. Thus, the combination of real time drought monitoring and 
availability of seasonal rainfall forecasts constitutes a solid foundation for a drought early 
warning system. 
 
This summary is based on the NGI report, Natural- and Conflict-Related Hazards in the 
Asia-Pacific, 15 March 2009. 


